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Lemma 1 Let f be continuous for large |z|,

and assume that f(z) — 0 as z — oo. Then,
provided t > 0, we have

lim
R—o0

/ f(z)e*dz = 0
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where cp denotes the semicircular contour
01— a+ Re, T <6<

Note that the proof of this result is essentially

a—iR that of Jordan’s Lemma rotated through 7.

Proof. Let € > 0. Because f(z) — 0 as z — 00, there exists K > 0 such that |z] > K
implies |f(z)| < e. This means that |f(z)] < e whenever |z — a|] > K + |a|, because
|z| + |a] > |z —a|. For R > K + |a|, we have

‘/C f(z)etzdz’
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|z—a|=R > K + |a
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CR

5/ eRe(tz) |dZ’
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by symmetry

Jordan’s inequality and ¢ > 0

m 2
2 Rel® [_ —2tR9/7r:|
¢ 2tRe 0
elore _
T ety
elore
t

Since t > 0 is fixed, this final quantity can be made as small as desired. This completes

the proof.
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