Angles at points where $f^{\prime}(z)=0$

Suppose we have a point z somewhere in \mathbb{C}, and two tiny displacements from it, at $z+h_{1}$ and $z+h_{2}$. If the map is conformal, then the angle between those (as measured from z) is the same before and after the map.

The angle between $z+h_{1}$ and $z+h_{2}$ (as measured from z) can be found by pretending that z is the origin (by subtracting z), and taking the difference of the resulting arguments:

$$
\arg \left(\left(z+h_{2}\right)-z\right)-\arg \left(\left(z+h_{1}\right)-z\right)=\arg \left(h_{2}\right)-\arg \left(h_{1}\right)
$$

Now, using a Taylor Series, we have

$$
f(z+h)=f(z)+h f^{\prime}(z)+\frac{1}{2} h^{2} f^{\prime \prime}(z)+\ldots
$$

so that, for any h,

$$
\arg (f(z+h)-f(z)) \approx \arg \left(h f^{\prime}(z)\right)=\arg (h)+\arg \left(f^{\prime}(z)\right)
$$

providing $f^{\prime}(z)$ is non-zero. If $f^{\prime}(z)=0$, then $h f^{\prime}(z)=0$ and its argument is undefined.

So, if $f^{\prime}(z)$ is non-zero, the angle between $f\left(z+h_{1}\right)$ and $f\left(z+h_{2}\right)$ (as measured from $f(z)$) is

$$
\arg \left(f\left(z+h_{2}\right)-f(z)\right)-\arg \left(f\left(z+h_{1}\right)-f(z)\right)=\arg \left(h_{2}\right)-\arg \left(h_{1}\right)
$$

since the $\arg \left(f^{\prime}(z)\right)$ terms cancel off. Thus conformal maps preserve angles - where the derivative is non-zero.

However, suppose that $f^{\prime}(z)=0$, but that $f^{\prime \prime}(z)$ is non-zero. Then we have to go to the next term in the Taylor Series:

$$
f(z+h)=f(z)+\frac{1}{2} h^{2} f^{\prime \prime}(z)+\ldots
$$

so that

$$
\begin{aligned}
\arg (f(z+h)-f(z)) & \approx \arg \left(\frac{1}{2} h^{2} f^{\prime \prime}(z)\right) \\
& =\arg \left(h^{2}\right)+\arg \left(\frac{1}{2} f^{\prime \prime}(z)\right) \\
& =2 \arg (h)+\arg \left(\frac{1}{2} f^{\prime \prime}(z)\right)
\end{aligned}
$$

So this time, when we subtract, the $\arg \left(\frac{1}{2} f^{\prime \prime}(z)\right)$ terms cancel off, and we find

$$
\arg \left(f\left(z+h_{2}\right)-f(z)\right)-\arg \left(f\left(z+h_{1}\right)-f(z)\right)=2\left(\arg \left(h_{2}\right)-\arg \left(h_{1}\right)\right),
$$

so the angle has doubled.
What if $f^{\prime \prime}(z)=0$ as well? Then we go to the next term in the Taylor Series:

$$
f(z+h)=f(z)+\frac{1}{6} h^{3} f^{\prime \prime \prime}(z)+\ldots
$$

so that

$$
\begin{aligned}
\arg (f(z+h)-f(z)) & \approx \arg \left(\frac{1}{6} h^{3} f^{\prime \prime \prime}(z)\right) \\
& =\arg \left(h^{3}\right)+\arg \left(\frac{1}{6} f^{\prime \prime \prime}(z)\right) \\
& =3 \arg (h)+\arg \left(\frac{1}{6} f^{\prime \prime \prime}(z)\right)
\end{aligned}
$$

So this time, when we subtract, the $\arg \left(\frac{1}{6} f^{\prime \prime \prime}(z)\right)$ terms cancel off, and we find

$$
\arg \left(f\left(z+h_{2}\right)-f(z)\right)-\arg \left(f\left(z+h_{1}\right)-f(z)\right)=3\left(\arg \left(h_{2}\right)-\arg \left(h_{1}\right)\right),
$$

so the angle has trebled.
More generally still, if the first non-zero derivative to appear in the Taylor Series is the $n^{\text {th }}$ derivative, then the $\arg \left(\frac{1}{n!} f^{(n)}(z)\right)$ terms cancel, and the argument increases by a factor of n.

