
Lent 2024 COMPLEX METHODS G. Taylor

Starred questions are optional.

Conformal maps

1. (i) Let f(z) =
az + b

cz + d
, with ad− bc 6= 0. Where in C is f conformal?

(ii) Let f(z) =
z + 1

z − 1
. What are the images of the real axis, the imaginary axis, and the

unit circle? What are the images of the unit disc and the quadrant {x+iy : x, y > 0}?

(iii) Let C1 be the unit circle, and C2 the circle |z − (1 + i)| = 1. Find a Möbius map
which simultaneously sends C1 to the real axis and C2 to the imaginary axis.

The circles divide the plane into four regions. Where does your map send each
region?

*(iv) Prove that a Möbius map sends the unit disc onto itself if and only if it has the form

f(z) = eiθ
(
z + α

ᾱz + 1

)
for some θ ∈ R and some α ∈ C with |α| < 1.

2. Find the images of the following maps, using the principal branches in (ii) and (iv). If
you haven’t met branches yet then have a go anyway, as though I hadn’t mentioned them.

(i) f(z) = z2 on the half-disc {z : |z| < 1, Re(z) > 0}
(ii) f(z) = z1/3 on the ‘cut’ plane C \ {x+ iy : x 6 0, y = 0}
(iii) f(z) = exp z on the half-strip {x+ iy : x > 0, 0 < y < π

2 }
(iv) f(z) = log z on the half-disc {z : |z| < 1, Re(z) > 0}

3. For each of the following regions, construct a bijective conformal map from the region to
the unit disc. If you give a composition of several functions, it would be helpful to provide
a sketch to illustrate each step.

(i) the open quarter-disc {z : |z| < 1, arg z ∈ (0, π2 )}
(ii) the half-strip {x+ iy : −1 < x < 1, y > 0}
(iii) the open region enclosed between the circles |z − 1| = 1 and |z − 2| = 2.

4. Use the decomposition

z

(z − 1)2
=

(
1

1− z
− 1

2

)2

− 1

4

to show that f(z) = z/(z − 1)2 is a bijective conformal map from the disc |z| < 1 to the
domain C \ {x+ iy : x 6 −1

4 , y = 0}.
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*5. Let f be analytic and z0 ∈ C be such that f ′(z0) = 0 and f ′′(z0) 6= 0. By considering
the Taylor expansion of f(z + h) about z0, prove that f doubles angles between curves
intersecting at z0. What happens if f ′(z0) = f ′′(z0) = 0 and f ′′′(z0) 6= 0?

6. Consider the map f(z) = 1
2(z + 1

z ). Find the points where this map is not conformal
and determine how the angles between two curves at those points change at their image.
You can quote the results of the previous question here, whether you did it or not.

Show that f takes concentric circles with radius r > 1 centered at the origin to cofocal
ellipses. What is the image of the unit circle?

By considering angles at certain points, sketch the image of the circle |z − 1| = 2.

* Sketch the images of the circles |z − (1 + i)| =
√

5 and |z − i| =
√

2.

Cauchy-Riemann equations ; harmonic functions

7. (i) Let u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations, and define

g(z, z̄) = u

(
z + z̄

2
,
z − z̄

2i

)
+ iv

(
z + z̄

2
,
z − z̄

2i

)
.

Use the chain rule to show that ∂g/∂z̄ = 0. Explain the significance of this result.

(ii) Where, if anywhere, in the complex plane are the following functions differentiable,
and where are they analytic?

Im z ; |z|2 ; sech z .

(iii) Let f(z) = z5/|z|4 for z 6= 0, and f(0) = 0. Show that the real and imaginary parts
of f satisfy the Cauchy-Riemann equations at z = 0, but that f is not differentiable
there. To calculate, say, ux(0, 0), set y = 0 before differentiating with respect to x.

8. Let f be analytic on an open set D ⊂ C. Show that if any of Re f , Im f , |f | or arg f is
constant on D, then f is constant on D.

9. Find complex analytic functions f(z) whose real parts u(x, y) are the following:

(i) xy (ii) sinx cosh y (iii) ex(x cos y − y sin y) (iv)
y

(x+ 1)2 + y2

You should give your answers as functions of z, rather than of x and y.

* Notice that in (ii) the expression u(z, 0) agrees with f(z). When is this true in general?

10. (i) Let u(x, y) = tan−1(y/x). Show that u is harmonic on {(x, y) : x > 0} by finding
a complex analytic function defined on {x + iy : x > 0} whose real (or imaginary)
part is u. Show similarly that u is harmonic on {(x, y) : x < 0}.

(ii) Let u(x, y) = tan−1
(

2x

x2 + y2 − 1

)
. Where on R2 is u defined? By considering

w(z) =
z + i

z − i
and using two cases as in (i), show that u is harmonic where defined.
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11. Show that g(z) = exp z maps {x+ iy : 0 < y < π} onto {x+ iy : y > 0}.

Show that h(z) = sin z maps {x+ iy : −π
2 < x < π

2 , y > 0} onto {x+ iy : y > 0}.

Hence find a conformal map of {x+ iy : −π
2 < x < π

2 , y > 0} onto {x+ iy : 0 < y < π}.

Find a function v(x, y) which is harmonic on the strip {−π
2 < x < π

2 , y > 0}, with
limiting values on the boundaries given by: v = 0 on the two parts of the boundary in
the left half-plane, and v = 1 on the two parts of the boundary in the right half-plane.

Is your function v unique?

You should give v as a function of x and y, rather than of z.

*12. Find a function v(x, y) which is harmonic on the unit disc, with limiting values as follows:
v = 1 on the part of the boundary in the first quadrant, v = −1 on the part in the third
quadrant, and v = 0 on the parts in the second and fourth quadrants.

Branches

13. Explain how the principal branch of log z can be used to define a branch of zi which is
single-valued on the set D = C \ {x+ iy : x 6 0, y = 0}.

What is ii for this branch? Does the identity (zw)i = ziwi hold?

Using polar coordinates, show that the branch of zi defined above maps D onto an
annulus which is covered infinitely often.

How would your answers change for a different branch (with the same cut)?

14. Find all branch points of f(z) = [z(z + 1)]1/3, and justify why they are branch points.
Draw some possible branch cuts in the complex plane.

Repeat with f(z) = [z(z + 1)(z + 2)]1/3.

* Repeat with f(z) = [z(z + 1)(z + 2)(z + 3)]1/n for n = 2 and n = 3.

15. Let f(z) = (z2 − 1)1/2. Consider the following two branches of this function.

f1(z) : branch cut [−1, 1], f1(x) = +
√
x2 − 1 for real x > 1

f2(z) : branch cut R \ (−1, 1), f2(x) = +i
√

1− x2 for real x ∈ (−1, 1).

Find the limiting values of f1 and f2 above and below their respective branch cuts.

Prove that f1 is an odd function and f2 is even, i.e., f1(−z) = −f1(z) and f2(−z) = f2(z).

*16. Let f(z) be a polynomial of even degree. Explain why there is an analytic function g(z),
defined on the region |z| > R for some suitable R, such that g(z)2 = f(z). When is there
such a function defined on the region |z| < r for some r?
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Series ; singularities

17. Use partial fractions to find the Laurent series of 1/((z − a)(z − b)) about z = 0, where
|b| > |a| > 0, in each of the regions |z| < |a|, |a| < |z| < |b| and |z| > |b|.

18. Find the first two non-zero coefficients in the Taylor series about the origin of the following
functions, assuming principal branches for (i), (ii) and (iii).

(i) z/ log(1 + z) ; (ii)
√

cos z − 1 ; (iii) log(1 + ez) ; (iv) ee
z
.

Find the radius of convergence of each series.

How would your series change for different branches?

19. Find and classify the singularities in the (finite) complex plane of the following functions:

(i)
1

z3(z − 1)2
(ii)

ez − e
(z − 1)3

(iii)
z

sinh z
(iv)

z

log z

(v) tan z (vi) exp(tan z) (vii) log(tan z) (viii) tan(z−1) .

20. Find the first three terms of the Laurent series of f(z) = cosec2z valid for 0 < |z| < π.

Show that the function

g(z) = cosec2z − 1

z2
− 1

(z + π)2
− 1

(z − π)2
,

has only removable singularities in |z| < 2π. Use this to show that, in the Laurent series
of f(z) valid for π < |z| < 2π, the central three non-zero terms are

· · ·+ 3

z2
+

(
1

3
− 2

π2

)
+

(
1

15
− 6

π4

)
z2 + · · ·

* What are the corresponding terms in the series for f(z) valid for nπ < |z| < (n+ 1)π ?

Integration

Some of the integrals in this section can be evaluated by real methods, but please do them all
by contour integral methods.

21. By parametrising the curves (and not using Cauchy’s theorem or the residue theorem),

evaluate

∮
C
z̄ dz and

∮
C
z1/2 dz (using the principal branch of z1/2) in the cases:

(i) C is the circle |z| = 1, and (ii) C is the circle |z − 1| = 1.

22. Using Cauchy’s theorem or Cauchy’s integral formula (but not the residue theorem),

evaluate

∮
C

1

1 + z2
dz in the cases where C is:

(i) the circle |z − 1| = 1, (ii) the circle |z − i| = 1, and (iii) the circle |z| = 2.
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23. By evaluating

∮
C

1

z
dz, where C is the ellipse

x2

a2
+
y2

b2
= 1 with a, b > 0, show that

∫ 2π

0

1

a2 cos2 θ + b2 sin2 θ
dθ =

2π

ab
.

24. Suppose that at z = z0, the function f is non-zero and the function g has a simple zero.
Prove that the residue of f/g at z0 is f(z0)/g

′(z0).

Suppose that at z = z0, the function f has a pole of order N . Prove that residue of f at
z0 is

lim
z→z0

1

(N − 1)!

dN−1

dzN−1

[
(z − z0)Nf(z)

]
.

25. Evaluate

∮
C

z3 e1/z

1 + z
dz , where C is the circle |z| = 2, using the following methods.

(i) Integrate directly, using the residue theorem.

(ii) Apply the substitution w = 1/z, then use the residue theorem.

*(iii) By considering the Laurent series valid on C, and integrating term by term.

26. (i) Evaluate

∫ ∞
−∞

1

1 + x+ x2
dx by closing the contour in the upper half-plane.

How does the calculation differ if you close the contour in the lower half-plane?

(ii) Evaluate lim
R→∞

∫ R

−R

x

1 + x+ x2
dx (without using real methods or part (i)).

Why is the limit necessary here?

(iii) Evaluate

∫ ∞
−∞

eikx

1 + x2
dx for k > 0 and for k < 0.

27. (i) By integrating around a keyhole contour, show that∫ ∞
0

xa−1

1 + x
dx =

π

sinπa
(0 < a < 1).

(ii) By integrating around a contour involving the line arg z = 2π
n , evaluate∫ ∞

0

1

1 + xn
dx (n > 2).

Check by change of variable that your answer agrees with that of part (i).

28. By evaluating each side using a suitable contour integral, show that∫ π

0
sin2n θ dθ =

∫ ∞
−∞

1

(1 + x2)n+1
dx (n ∈ N).

Find a change of variables that explains why they are equal.
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29. Establish the following:

(i)

∫ ∞
0

cosx

(1 + x2)3
dx =

7π

16e
; (ii)

∫ ∞
0

sin2 x

x2
dx =

π

2
; (iii)

∫ ∞
0

log x

1 + x2
dx = 0 .

Do (ii) by a contour integral, even though there are other ways – see question 34.

For (iii), you could integrate (log z)2

1+z2
around a keyhole contour, or integrate log z

1+z2
around

an arch-shaped contour, i.e. a semicircle with a bump at 0. (You could do both!) What
goes wrong if you integrate log z

1+z2
around a keyhole?

30. Using a (mostly) rectangular contour involving the line Im z = π, show that∫ ∞
0

sin ax

sinhx
dx =

π

2
tanh

πa

2
, for a ∈ R.

Deduce the value of

∫ ∞
0

x

sinhx
dx.

31. (i) By considering the integral of
cot z

z2 + π2a2
around a suitable contour, show that

∞∑
n=−∞

1

n2 + a2
=

π

a
cothπa , for ia /∈ Z.

Using the Laurent expansion of coth z, deduce the value of
∞∑
n=1

1
n2 .

(ii) Show similarly that

∞∑
n=−∞

1

(n+ a)2
=

π2

sin2 πa
, for a /∈ Z.

* By choosing a suitable value of a, deduce the value of
∞∑
n=1

1
n2 .

*32. By integrating around a contour involving the line arg z = π
4 , evaluate∫ ∞

0
cosx2 dx and

∫ ∞
0

sinx2 dx .

You may quote that
∫∞
0 e−x

2
dx = 1

2

√
π.

*33. Evaluate the following using suitable contour integrals, where 0 < a < 1 in (i) and (iii).

(i)

∫ ∞
0

log(x+ 1)

xa+1
dx ; (ii)

∫ 1

−1

√
1− x2

1 + x2
dx ; (iii)

∫ 2π

0
log(1 + a cos θ) dθ .
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Fourier Transforms

34. Let

f(x) =

{
1 for |x| < a
0 for |x| > a

and g(x) =

{
a− |x| for |x| < a
0 for |x| > a

.

(i) Show that f̃(k) =
2 sin ak

k
and verify the inversion formula by contour integration.

(ii) Show that g(x) = 1
2(f ∗f)(2x) and hence find g̃(k) using the convolution theorem.

(iii) Use Parseval’s Identity to show that∫ ∞
−∞

sin2 x

x2
dx = π and

∫ ∞
−∞

sin4 x

x4
dx =

2π

3
.

35. Use the Fourier inversion formula (not contour integration) to show that, for a > 0,∫ ∞
−∞

eikx

a2 + k2
dk =

π

a
e−a|x| and

∫ ∞
−∞

eikx

b2 + (a+ ik)2
dk =

2π

b
H(x)e−ax sin bx ,

where H(x) is the Heaviside function. What are the answers when a < 0?

36. By considering the convolution of the function f(x) = e−|x| with itself, show that∫ ∞
−∞

eikx

(1 + k2)2
dk =

π

2
(1 + |x|)e−|x|.

Verify this result by contour integration.

37. This question shows how the Fourier transform representation of a function reduces to a
Fourier series if the function is periodic.

Suppose that f(x) has period 2π. Let F (k) =
∫ 2π
0 f(x)e−ikx dx, and let g(x) = f(x)e−a|x|,

where a > 0. Show that the Fourier transform of g(x) is given by

g̃(k) =
F (k − ia)

1− e−2πi(k−ia)
− F (k + ia)

1− e−2πi(k+ia)
.

Assuming that F is analytic, sketch the locations of the singularities of g̃ in the complex
k-plane. Assuming further that the sequence sup{|g̃(k)| : |k| = n + 1

2} tends to 0 as
n→∞, use the Fourier inversion theorem and a suitable contour to show that

g(x) =
1

2π

∞∑
n=−∞

F (n)e(in−a)x

for x > 0, and derive a similar result for x < 0.

Deduce that

f(x) =
1

2π

∞∑
n=−∞

F (n)einx.
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Laplace Transforms

38. Use standard properties (translation, scaling, etc.) of the Laplace transform to find the
Laplace transforms of the following functions: (i) t3e−3t, (ii) 2e3t sin 4t, (iii) e−4t cosh 2t.

39. The function f(t) has Laplace transform F (s) =
1

s3(s2 + 1)
. Find f(t) in three ways:

(i) using partial fractions and standard transforms

(ii) using the inversion formula and a contour integral

(iii) using standard transforms and the convolution theorem.

40. Find the Laplace transforms of f(t) = t−1/2 and g(t) = t1/2.

You may quote that
∫∞
0 e−x

2
dx = 1

2

√
π.

Verify, by integrating around a keyhole contour, that the inversion formula holds for f(t).

41. (i) The Gamma function is defined for z ∈ C with Re(z) > 0 by

Γ(z) =

∫ ∞
0

tz−1e−t dt .

Show that Γ(z+1) = zΓ(z), and deduce that Γ(n+1) = n! if n is a positive integer.
Using the previous question, write down the value of Γ(12).

For fixed z, find the Laplace transform of f(t) = tz−1 in terms of Γ(z).

(ii) The Beta function is defined for z, w ∈ C with Re(z),Re(w) > 0 by

B(z, w) =

∫ 1

0
tz−1(1− t)w−1 dt .

Use the convolution theorem for Laplace transforms to show that

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
.

(iii) Using question 27, deduce that Γ(z)Γ(1− z) =
π

sinπz
.

For which range of z does this hold?

*42. Using the relation Γ(z + 1) = zΓ(z), show that we may use analytic continuation to
extend the definition of Γ(z) to the whole of C, apart from isolated singularities. Find
and classify these singularities and find the residues of Γ(z) at them.

Does the relation Γ(z)Γ(1− z) =
π

sinπz
hold for the continuation?

*43. This isn’t really to do with Complex Methods – it’s just a nice use of the results above.

Let Im,n =

∫ π/2

0
cosmθ sinnθ dθ, for m,n ∈ N.

Find Im,n in terms of the Gamma function. Deduce that Im,n is a rational multiple of π
if m and n are both even, and is rational otherwise.
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Laplace Transforms – differential equations

In questions 44–48, use Laplace transforms to solve the given equations for t > 0.

44. Solve the differential equation y′′′− 3y′′+ 3y′− y = t2et, with initial conditions y(0) = 1,
y′(0) = 0, y′′(0) = −2.

45. Solve the differential equation y′′ − 3y′ + 2y = δ(t), with initial conditions y(0) = 0,
y′(0) = 0, where δ(t) is the Dirac delta function.

For δ(t), take the Laplace transform to be
∫∞
0− f(t)e−st dt, i.e. start ‘just to the left of 0’.

46. Solve the system of differential equations

(
x′

y′

)
=

(
−5 10
−1 1

)(
x
y

)
, with

(
x(0)
y(0)

)
=

(
3
1

)
.

47. Solve the integral equation f(t) + 4

∫ t

0
(t− τ) f(τ) dτ = t.

Verify that your solution for f(t) is correct.

48. Solve the wave equation

∂2y

∂t2
− ∂2y

∂x2
= 1 for x > 0, t > 0,

with boundary conditions

y(0, t) = y(x, 0) =
∂y

∂t
(x, 0) = 0 and y(x, t)→ 1

2 t
2 as x→∞.

49. By considering the Laplace transform of f ′(t), and assuming that lim
t→∞

f(t) exists for the

second case, prove that

f(0) = lim
s→∞

sF (s) and lim
t→∞

f(t) = lim
s→0

sF (s).

* Show that these still hold if we use the variant Laplace transform given in question 45,
providing we replace f(0) with lim

t→0+
f(t).

50. The zeroth-order Bessel function J0(t) satisfies the differential equation

tJ ′′0 + J ′0 + tJ0 = 0, J0(0) = 1. (†)

Find the Laplace transform of J0(t).

Find the convolution of J0(t) with itself, and show that

∫ ∞
0

J0(t) dt = 1.

* By using the inversion formula and a suitable branch cut, show that

J0(t) =
1

π

∫ π

0
cos(t cos θ) dθ.

Verify that this does indeed solve (†).
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