- 1. Let f be a continuous function from \mathbb{R} to \mathbb{R} , and suppose that for every t > 0 the sequence $f(t), f(2t), f(3t), \ldots$ tends to 0. Prove that $f(x) \to 0$ as $x \to \infty$.
- 2. (i) Find a sequence $[a_1, b_1], [a_2, b_2], \ldots$ of closed intervals in \mathbb{R} of positive length whose union contains all rationals in [0, 1] and such that $\sum_{i=1}^{\infty} (b_i a_i) < 1$.
 - (ii) Let $[a_1, b_1], [a_2, b_2], \ldots$ be a sequence of closed intervals in \mathbb{R} of positive length whose union contains all irrationals in [0, 1]. Can we have $\sum_{i=1}^{\infty} (b_i a_i) < 1$?
- 3. Let f be an infinitely-differentiable function from \mathbb{R} to \mathbb{R} , such that for every x there is an n with all the derivatives $f^{(n)}(x)$, $f^{(n+1)}(x)$, $f^{(n+2)}(x)$, ... being zero. Must f be a polynomial?
- 4. Show that \mathbb{R}^2 cannot be written as the disjoint union of (non-trivial) circles. What about \mathbb{R}^3 ?
- 5. (i) Does there exist a function from \mathbb{R} to \mathbb{R} which is continuous at precisely the rationals?
 - (ii) Does there exist a function from \mathbb{R} to \mathbb{R} which is continuous at precisely the irrationals?
- 6. We say that a function f from \mathbb{R} to \mathbb{R} crosses the axis at a point x if f(x) = 0 but for any $\epsilon > 0$ there exist y and z in $(x - \epsilon, x + \epsilon)$ with f(y) > 0 and f(z) < 0. Can a continuous function cross the axis at uncountably many places?
- 7. If f is a polynomial of one real variable that is bounded below (on \mathbb{R}), explain why f attains its minimum value. If f is a polynomial of two real variables that is bounded below (on \mathbb{R}^2), must f attain its minimum value?
- 8. Show that the set $\mathbb{R}^{\mathbb{R}}$ of all functions from \mathbb{R} to \mathbb{R} bijects with the set $\mathcal{P}(\mathbb{R})$ of all subsets of \mathbb{R} , and that the set of continuous functions from \mathbb{R} to \mathbb{R} bijects with \mathbb{R} . What about the sets of monotonic functions and of integrable functions?
- 9. A subset of \mathbb{R} is *perfect* if it is closed and has no isolated points. Prove that every non-empty perfect set has cardinality that of \mathbb{R} , and that every closed set is the union of a perfect set and a countable set.
- 10. Construct a function from \mathbb{R} to \mathbb{R} that is infinitely differentiable, and which is identically 1 on [-1, 1] and identically 0 outside (-2, 2).
- 11. Let f be a differentiable function from \mathbb{Q} to \mathbb{Q} such that f' = f. Must f be identically zero?