1. Let f be a continuous function from \mathbb{R} to \mathbb{R}, and suppose that for every $t>0$ the sequence $f(t), f(2 t), f(3 t), \ldots$ tends to 0 . Prove that $f(x) \rightarrow 0$ as $x \rightarrow \infty$.
2. (i) Find a sequence $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots$ of closed intervals in \mathbb{R} of positive length whose union contains all rationals in $[0,1]$ and such that $\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right)<1$.
(ii) Let $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots$ be a sequence of closed intervals in \mathbb{R} of positive length whose union contains all irrationals in $[0,1]$. Can we have $\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right)<1$?
3. Let f be an infinitely-differentiable function from \mathbb{R} to \mathbb{R}, such that for every x there is an n with all the derivatives $f^{(n)}(x), f^{(n+1)}(x), f^{(n+2)}(x), \ldots$ being zero. Must f be a polynomial?
4. Show that \mathbb{R}^{2} cannot be written as the disjoint union of (non-trivial) circles. What about \mathbb{R}^{3} ?
5. (i) Does there exist a function from \mathbb{R} to \mathbb{R} which is continuous at precisely the rationals?
(ii) Does there exist a function from \mathbb{R} to \mathbb{R} which is continuous at precisely the irrationals?
6. We say that a function f from \mathbb{R} to \mathbb{R} crosses the axis at a point x if $f(x)=0$ but for any $\epsilon>0$ there exist y and z in $(x-\epsilon, x+\epsilon)$ with $f(y)>0$ and $f(z)<0$. Can a continuous function cross the axis at uncountably many places?
7. If f is a polynomial of one real variable that is bounded below (on \mathbb{R}), explain why f attains its minimum value. If f is a polynomial of two real variables that is bounded below (on \mathbb{R}^{2}), must f attain its minimum value?
8. Show that the set $\mathbb{R}^{\mathbb{R}}$ of all functions from \mathbb{R} to \mathbb{R} bijects with the set $\mathcal{P}(\mathbb{R})$ of all subsets of \mathbb{R}, and that the set of continuous functions from \mathbb{R} to \mathbb{R} bijects with \mathbb{R}. What about the sets of monotonic functions and of integrable functions?
9. A subset of \mathbb{R} is perfect if it is closed and has no isolated points. Prove that every non-empty perfect set has cardinality that of \mathbb{R}, and that every closed set is the union of a perfect set and a countable set.
10. Construct a function from \mathbb{R} to \mathbb{R} that is infinitely differentiable, and which is identically 1 on $[-1,1]$ and identically 0 outside $(-2,2)$.
11. Let f be a differentiable function from \mathbb{Q} to \mathbb{Q} such that $f^{\prime}=f$. Must f be identically zero?
