ANALYSIS I EXAMPLES 3

C. M. Warnick Lent 2024

Comments on and/or corrections may be e-mailed to c.m.warnick@maths.cam.ac.uk.

- **1.** Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f(x) f(y)| \leq |x y|^2$ for all $x, y \in \mathbb{R}$. Show that f is constant.
- **2.** Given $\alpha \in \mathbb{R}$, define $f_{\alpha}: [-1,1] \to \mathbb{R}$ by $f_{\alpha}(x) = |x|^{\alpha} \sin(1/x)$ for $x \neq 0$ and $f_{\alpha}(0) = 0$. Is f_0 continuous? Is f_1 differentiable? Draw a table, with 9 columns labelled $\alpha = -\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}$ and with 6 rows labelled " f_{α} bounded", " f_{α} continuous", " f_{α} differentiable", " f_{α}' bounded", " f_{α}' continuous", " f_{α}' differentiable". Place ticks and crosses at appropriate places in the table.
- **3**. By applying the mean value theorem to $\log(1+x)$ on [0,a/n] with n>|a|, prove carefully that $(1+a/n)^n\to e^a$ as $n\to\infty$.
- **4**. Find $\lim_{n\to\infty} n(a^{1/n}-1)$, where a>0.
- 5. "Let f' exist on (a, b) and let $c \in (a, b)$. If $c + h \in (a, b)$ then $(f(c+h) f(c))/h = f'(c+\theta h)$. Let $h \to 0$; then $f'(c+\theta h) \to f'(c)$. Thus f' is continuous at c." Explain why question 2 shows that this argument is false. At what point does it fail?
- **6**. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \exp(-1/x^2)$ for $x \neq 0$ and f(0) = 0. Show that f is continuous and differentiable. Show that f is twice differentiable. Indeed, show that f is infinitely differentiable, and that $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. Comment, in the light of what you know about Taylor series.
- 7. Find the radius of convergence of each of these power series.

$$\sum_{n\geqslant 0} \frac{2\cdot 4\cdot 6\cdots (2n+2)}{1\cdot 4\cdot 7\cdots (3n+1)} z^n \qquad \sum_{n\geqslant 1} \frac{z^{3n}}{n2^n} \qquad \sum_{n\geqslant 0} \frac{n^n z^n}{n!} \qquad \sum_{n\geqslant 1} n^{\sqrt{n}} z^n$$

8. (L'Hôpital's rule.) Suppose that $f,g:[a,b]\to\mathbb{R}$ are continuous and differentiable on (a,b). Suppose that f(a)=g(a)=0, that g'(x) does not vanish near a and $f'(x)/g'(x)\to \ell$ as $x\to a$. Show that $f(x)/g(x)\to \ell$ as $x\to a$. Use the rule with g(x)=x-a to show that if $f'(x)\to \ell$ as $x\to a$, then f is differentiable at a with $f'(a)=\ell$.

Find a pair of functions f and g as above for which $\lim_{x\to a} f(x)/g(x)$ exists, but $\lim_{x\to a} f'(x)/g'(x)$ does not.

Investigate the limit as $x \to 1$ of

$$\frac{x - (n+1)x^{n+1} + nx^{n+2}}{(1-x)^2}.$$

- **9**. Find the derivative of $\tan x$. How do you know there is a differentiable inverse function $\tan^{-1} x$ for $x \in \mathbb{R}$? What is its derivative? Now let $g(x) = x x^3/3 + x^5/5 + \cdots$ for |x| < 1. By considering g'(x), explain carefully why $\tan^{-1} x = g(x)$ for |x| < 1.
- 10. The infinite product $\prod_{n=1}^{\infty} (1+a_n)$ is said to converge if the sequence $p_n = (1+a_1)\cdots(1+a_n)$ converges. Suppose that $a_n \ge 0$ for all n. Putting $s_m = a_1+\cdots+a_m$, prove that $s_n \le p_n \le e^{s_n}$, and deduce that $\prod_{n=1}^{\infty} (1+a_n)$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges. Evaluate $\prod_{n=2}^{\infty} (1+1/(n^2-1))$.
- 11. Let f be continuous on [-1,1] and twice differentiable on (-1,1). Let $\phi(x) = (f(x) f(0))/x$ for $x \neq 0$ and $\phi(0) = f'(0)$. Show that ϕ is continuous on [-1,1] and differentiable on (-1,1). Using a second order mean value theorem for f, show that $\phi'(x) = f''(\theta x)/2$ for some $0 < \theta < 1$. Hence prove that there exists $c \in (-1,1)$ with f''(c) = f(-1) + f(1) 2f(0).
- 12. Prove the theorem of Darboux: that if $f: \mathbb{R} \to \mathbb{R}$ is differentiable then f' has the "property of Darboux". (That is to say, if a < b and f'(a) < z < f'(b) then there exists c, a < c < b, with f'(c) = z.)
- **13**. Using Question 6, construct a function $g : \mathbb{R} \to \mathbb{R}$ that is infinitely-differentiable, positive on a given interval (a, b) and zero elsewhere.

Assuming standard results concerning integration, including the fundamental theorem of calculus, construct a function from \mathbb{R} to \mathbb{R} that is infinitely-differentiable, identically 1 on [-1,1] and identically 0 outside (-2,2).

⁽⁺⁾Construct an infinitely-differentiable, non-negative, function $\psi : \mathbb{R} \to \mathbb{R}$ that is identically 0 outside (-2,2), and satisfies

$$\sum_{n=-\infty}^{\infty} \psi(x-n) = 1, \quad \text{for all } x \in \mathbb{R}.$$